

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 6243–6246

Tetrahedron Letters

Convergent stereocontrolled synthesis of substituted exo-glycals by Stille cross-coupling of halo-exo-glycals and stannanes

Ana M. Gómez,^{a,*} Aitor Barrio,^a Iñigo Amurrio,^a Serafín Valverde,^a Slawomir Jarosz^b and J. Cristóbal López^{a,*}

^aInstituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
^bInstitute of Organic Chamistry, Polish Academy of Sciences, Kaspracka 44, 01, 224 Warszawa ^bInstitute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warszawa, Poland

> Received 31 May 2006; revised 22 June 2006; accepted 26 June 2006 Available online 17 July 2006

Abstract— (Z) -exo-Glycals can be conveniently prepared in a convergent manner by Stille cross-coupling of (Z) -halo (Br,I) -exoglycals and aryl or alkenyl stannanes, the latter are readily obtained by addition of tributylstannyl radicals to terminal alkynes. © 2006 Elsevier Ltd. All rights reserved.

1-exo-Methylene pyranoses and furanoses (2,6- and 2,5 anhydro-1-deoxy-hept-1-enitols, respectively), currently known as *exo-glycals*, $1,1^{-3}$ are interesting compounds from a biological and synthetic standpoint. They have been used as glycosidase inhibitors,^{[4](#page-2-0)} and have proven to be valuable synthetic intermediates owing to the versatility supplied by the enol ether double bond for further elaboration[.3](#page-2-0) The first methods described for the preparation of exo-glycals had focused on the methylenation of the corresponding lactones using the Tebbe or Petasis reagents.^{[1,2,5](#page-2-0)} More recently, Castillón and co-workers^{[6](#page-2-0)} and Gueyrard et al^{[7](#page-2-0)} have described novel methods for the preparation of 1. On the other hand, substituted exo-glycals, for example 2, (Fig. 1) have shown interesting biological properties $8,9$ and in recent years, several new methods for their preparation have been reported. These methods include: Wittig olefin-

Figure 1. exo-Glycal (1), substituted exo-glycal (2), and halo-exoglycal (3).

ation of glycosyl phosponium salts $10,11$ or sugar lac-tones,^{[12–14](#page-2-0)} Keck reaction of glycosyl dihalides,^{[15](#page-2-0)} [2,3]-Wittig sigmatropic rearrangement,¹⁶ Ramberg-Bäcklund rearrangement of S -glycosides^{[17,18](#page-2-0)} and nucleophilic addition to sugar lactones followed by elimination.^{[19](#page-3-0)}

In this context, we have reported several methods for the preparation of substituted furanosidic and pyranosidic exo -glycals,^{20–23} and in this letter, we disclose a convergent method for the transformation $1 \rightarrow 2$ based on the Stille cross-coupling reaction^{[24](#page-3-0)} of halo- exo -glycals 3 and stannanes (4) (Scheme 1).

The starting materials for our studies, (Z) -halo-exoglycals 3a, 3b, and 3c, [\(Fig. 2\)](#page-1-0) were prepared from the corresponding lactones by methylenation (Petasis reagent)^{[25](#page-3-0)} and stereoselective iodination^{[22](#page-3-0)} with IDCT (iodonium dicollidinium triflate), 26 or bromination $(Br_2, Et_3N).^{21}$ $(Br_2, Et_3N).^{21}$ $(Br_2, Et_3N).^{21}$

In order to evaluate the scope of the synthetic method we chose commercially available tetraphenyltin (4a)

Scheme 1. General strategy for the preparation of substituted exoglycals from 1-exo-methylene pyranoses.

^{*} Corresponding authors. Fax: +34 91 5644853 (A.M.G.). Tel.: +34 91 5622900; fax: +34 91 5644853 (J.C.L.); e-mail addresses: [anago@](mailto:anago@ iqog.csic.es) [iqog.csic.es;](mailto:anago@ iqog.csic.es) clopez@iqog.csic.es

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.06.133

Figure 2. Halo-exo-glycals and stannananes

and more elaborated alkenyl stannanes, 4b–d. The latter were readily obtained by triethyl borane mediated addition of tributyltinhydride to the corresponding alkynes, following a protocol described by Oshima and co-workers.[27–29](#page-3-0) Our results are displayed in Table 1.

The Stille cross-coupling reaction^{[30](#page-3-0)} worked well with iodo-exo-glycals $(3a, 3c)$ but less reactive bromo-exoglycal 3b failed to yield the expected substituted exo-glycal (Table 1, entry 3). For coupling reactions involving stannane 4b we found advantageous the use of fluoride ion, as recommended by Baldwin and co -workers^{[31](#page-3-0)} (Table 1, entries 2 and 5). The (Z)-stereochemistry of the starting halo-exo-glycal follows our previous stud-ies.^{[22,23](#page-3-0)} The stereochemistries of the *exo-glycals* (5–10) are in agreement with the fact that Stille cross-coupling reactions of vinyl iodides take place with retention of the configuration.24d The stereochemistry of the additional double bond has been assigned by ¹H NMR based on the observed coupling constants.

In summary, we have disclosed a synthetic route that permits the transformation of, readily available, 1-exomethylene pyranoses and furanoses (1) into substituted (Z) -exo-glycals (5–10) by stereoselective halogenation with IDCT, followed by Stille cross-coupling with alkenyl stannanes. The combination of halo-exo-glycals with, readily available, structurally complex alkenyl stannanes, paves the way to the preparation of 'interconnected' disaccharide 9 and a hybrid monosaccharide–indole structure, 10. These transformations are relevant from a synthetic standpoint, and from a biological perspective, since natural products hybrids $32-34$ have emerged as a promising approach to diversity oriented synthesis.[35,36](#page-3-0) In this context the compounds prepared in this study, and derivatives therefrom, will be tested

Table 1. Preparation of substituted exo-glycals from halo-exo-glycals 3 and stannanes 4

Table 1 (continued) Entry Halo-exo-glycol Stannane Product Product Standard Product Standard Product Nield (%) 5 $3c$ $4b$ **8** O MeO MeO MeO OMe 69^b 6 $3b$ $4c$ **9** \circ \sim \sim \circ O O ~ 5 O O O O O 68^a $7 \hspace{1.5cm} 3b \hspace{1.5cm} 4d$ **10** O O O \sim o N 76^a

Reaction conditions: (a) Stannane (1.1 equiv), Pd(PPh₃₎₄ (5%), CuI (10%), toluene, 100 °C. (b) Stannane (1.1 equiv), CsF (2.0 equiv), Pd(PPh₃₎₄ (10%), CuI (10%) DMF, 55 °C.

as glycosidase inhibitors and in high-throughput screening studies. Further results in this area will be reported in due course.

Acknowledgments

This research was supported with funds from the Dirección General de Enseñanza Superior (Grant PPQ-2003-00396). Bilateral grants from the Consejo Superior de Investigaciones Científicas (A.M.G. and J.C.L.) and Polish Academy of Sciences (S.J.) are gratefully acknowlegded. A.B. thanks the Spanish Ministerio de Educación for a predoctoral scholarship.

References and notes

- 1. Wilcox, C. S.; Long, G. W.; Suh, H. Tetrahedron Lett. 1984, 25, 395–398.
- 2. Rajanbabu, T. V.; Reddy, G. S. J. Org. Chem. 1986, 51, 5458–5461.
- 3. Reviews: (a) Taillefumier, C.; Chapleur, Y. Chem. Rev. 2004, 104, 263–292; (b) Taylor, R. J. K. Chem. Commun. 1999, 217–227.
- 4. (a) Brockhaus, M.; Lehmann, J. Carbohydr. Res. 1977, 53, 21–31; (b) Lehmann, J.; Schwesinger, B. Carbohydr. Res. 1982, 107, 43–53; (c) Fritz, H.; Lehmann, J.; Schlesselmann, P. Carbohydr. Res. 1983, 113, 71–92; (d) Hehre, E. J.; Brewer, C. F.; Uchiyama, T.; Schlesselmann, P.; Lehmann, J. Biochemistry 1980, 19, 3557–3664.
- 5. (a) Ali, M. H.; Collins, P. M.; Overend, W. G. Carbohydr. Res. 1990, 205, 428-434; (b) Csuk, R.; Glänzer, B. I.

Tetrahedron 1991, 47, 1655–1664; (c) Audrechy, A.; Sinaÿ, P. J. Org. Chem. 1992, 57, 4142–4151; (d) Faivre-Buet, V.; Eynard, I.; Nga, H. N.; Descotes, G.; Grouiller, A. J. Carbohydr. Chem. 1993, 12, 349–356.

- 6. Molas, P.; Matheu, M. I.; Castillón, S. Tetrahedron Lett. 2004, 45, 3721–3724.
- 7. Gueyrard, D.; Haddoub, R.; Salem, A.; Bacar, N. S.; Goekjian, P. G. Synlett 2005, 520–522.
- 8. Caravano, A.; Vincent, S. P.; Sinaÿ, P. Chem. Commun. 2004, 1216–1217.
- 9. Stoltz, F.; Reiner, M.; Blume, A.; Reutter, W.; Schmidt, R. R. J. Org. Chem. 2004, 69, 665–679.
- 10. Ousset, J. B.; Mioskowski, C.; Yang, Y.-L.; Falck, J. R. Tetrahedron Lett. 1984, 25, 5903–5906.
- 11. (a) Lieberknecht, A.; Griesser, H.; Bravo, R. D.; Colinas, P. A.; Grigera, R. J. Tetrahedron 1998, 54, 3159–3168; (b) Lieberknecht, A.; Griesser, H.; Krämer, B.; Bravo, R. D.; Colinas, P. A.; Grigera, R. J. Tetrahedron 1999, 55, 6475– 6482.
- 12. (a) Lakhrissi, M.; Chapleur, Y. J. Org. Chem. 1994, 59, 5752–5757; (b) Lakhrissi, M.; Chapleur, Y. Angew. Chem., Int. Ed. 1996, 35, 750–752.
- 13. (a) Molina, A.; Czernecki, S.; Xie, J. Tetrahedron Lett. 1998, 39, 7507–7510; (b) Xie, J.; Molina, A.; Czernecki, S. J. Carbohydr. Chem. 1999, 18, 481–498.
- 14. Gascón-López, M.; Motevalli, M.; Paloumbis, G.; Bladon, P.; Wyatt, P. B. Tetrahedron 2003, 59, 9349–9360.
- 15. Praly, J.-P.; Chen, G.-R.; Gola, J.; Hetzer, G.; Raphoz, C. Tetrahedron Lett. 1997, 38, 8185–8188; Praly, J.-P.; Chen, G.-R.; Gola, J.; Hetzer, G. Eur. J. Org. Chem. 2000, 2831– 2838.
- 16. Lay, L.; Meldal, M.; Nicotra, F.; Panza, L.; Russo, G. J. Chem. Soc., Chem. Commun. 1997, 1469–1470.
- 17. (a) Griffin, F. K.; Murphy, P. V.; Paterson, D. E.; Taylor, R. J. K. Tetrahedron Lett. 1998, 39, 8179–8182; (b) Griffin,

F. K.; Paterson, D. E.; Murphy, P. V.; Taylor, R. J. K. Eur. J. Org. Chem. 2002, 1305–1322.

- 18. Belica, P. S.; Franck, R. W. Tetrahedron Lett. 1998, 39, 8225–8228.
- 19. (a) Yang, W.-B.; Chang, C.-F.; Wang, S.-H.; Teo, C.-F.; Lin, C.-H. Tetrahedron Lett. 2001, 42, 4657–4660; (b) Yang, W.-B.; Bu, C.-Y.; Chang, C.-C.; Wang, S.-H.; Teo, C.-F.; Lin, C.-H. Tetrahedron Lett. 2001, 42, 6907–6910; (c) Yang, W.-B.; Yang, Y.-Y.; Gu, Y. F.; Wang, S.-H.; Chang, C.-C.; Lin, C.-H. J. Org. Chem. 2002, 67, 3773– 3782.
- 20. Gómez, A. M.; Pedregosa, A.; Valverde, S.; López, J. C. Chem. Commun. 2002, 2022–2023.
- 21. Gómez, A. M.; Danelón, G. O.; Pedregosa, A.; Valverde, S.; López, J. C. Chem. Commun. 2002, 2024-2025.
- 22. Gómez, A. M.; Pedregosa, A.; Valverde, S.; López, J. C. Tetrahedron Lett. 2003, 6111–6116.
- 23. Gómez, A. M.; Pedregosa, A.; Barrio, A.; Valverde, S.; López, J. C. Tetrahedron Lett. 2004, 6307-6310.
- 24. (a) Stille, J. K.; Milstein, D. J. Am. Chem. Soc. 1978, 100, 3636–3638; (b) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508–524; (c) Farina, V. Pure Appl. Chem. 1996, 68, 73–78; (d) Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1–652.
- 25. Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392–6394.
- 26. Veeneman, G. H.; Van Leeuwen, S. H.; Zuurmond, H.; Van Boom, J. H. J. Carbohydr. Chem. 1990, 9, 783– 796.
- 27. (a) Nozaki, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 2547–2549; (b) Nozaki, K.; Oshima, K.; Utimoto, K. Tetrahedron 1989, 45, 923–933.
- 28. The reactions were run at 0° C and the (*E*)-adducts were obtained as the major, or the sole, reaction compounds. Flash chromatography on silicagel allowed us to isolate the pure (E) -isomers. For an analogous process see: Gómez, A. M.; López, J. C.; Fraser-Reid, B. J. Chem. Soc., Perkin Trans. 1 1994, 1689-1695.
- 29. General procedure for the preparation of alkenyl-stannanes: To a stirred solution of the terminal alkyne (1.0 mol equiv) and tributyltin hydride (1.1 mol equiv) in toluene (10 mL/ mmol) was added triethylborane (0.1 mol equiv of an hexane solution) under argon at 0° C. The reaction mixture was stirred for 24 h and was then concentrated under reduced pressure. The residue was purified by flash chromatography.
- 30. General procedure for the Stille cross-coupling reaction: method A. A toluene solution containing the halo-exoglycal (300 mg) tetraphenyltin (1.1 equiv), $Pd(PPh₃)₄$ (0.05 equiv), and CuI (0.1 equiv.) was heated to 100° C. The heating was continued until disappearance of the starting material was observed by TLC. The reaction mixture was then allowed to cool to room temperature and treated with KF (saturated aqueous solution) and extracted with ethyl ether. The organic layer was filtered

through Celite®, dried (anhydrous MgSO₄), filtered, and concentrated. Flash chromatography of the residue (hexane–EtOAc) furnished the corresponding substituted glycal. *Method B*. A mixture of the halo-exo-glycal (300 mg) and the organotin reagent (1.1 equiv) was dissolved in DMF (2 mL) . Then CsF (2 equiv) , CuI (10%) , and $Pd(PPh₃)₄$ (10%) were added and the flask was evacuated and refilled with argon several times. The mixture was stirred at 55 \degree C until disappearance of the starting material was observed by TLC. The reaction mixture was then diluted with CH_2Cl_2 (50 mL) and water (25 mL). After vigorous shaking the mixture was filtered through Celite with $CH_2Cl_2/EtOAc$ (200 mL, 1:1). The organic layer was separated, dried (anhydrous $MgSO₄$), filtered, and concentrated. Flash chromatography of the residue (hexane– EtOAc) furnished the corresponding substituted glycal.

- 31. Mee, S. P. H.; Lee, V.; Baldwin, J. E. Angew. Chem., Int. Ed. 2004, 43, 1132–1136.
- 32. Natural products hybrids, see: (a) Hopen, S.; Emde, U.; Friedrich, T.; Grubert, L.; Koert, U. Angew. Chem., Int. Ed. 2000, 39, 2099–2102; (b) Tietze, L. F.; Schneider, G.; Wölfling, J.; Nöbel, T.; Wulff, C.; Schubert, I.; Rübeling, A. Angew. Chem., Int. Ed. 1998, 37, 2469–2470.
- 33. For the synthesis of terpene-based hybrids: Alvaro, E.; de la Torre, M. C.; Sierra, M. A. Org. Lett. 2003, 5, 2381– 2384.
- 34. For the synthesis of sugar-based hybrids: Gómez, A. M.; Uriel, C.; Valverde, S.; López, J. C. Org. Lett., in press, [doi:10.1021/oI060929+](http://dx.doi.org/10.1021/oI060929+).
- 35. Diversity oriented synthesis, see: (a) Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46–58; (b) Shang, S.; Tan, D. S. Curr. Opin. Chem. Biol. 2005, 9, 248–258.
- 36. Data for selected compounds: Compound (9). $\lbrack \alpha \rbrack_{D} +32.0$ (CHCl₃, c 0.53); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.32 (s, 3H), 1.33 (s, 3H), 1.37 (s, 3H), 1.38 (s, 3H), 1.43 (s, 3H), 1.44 (s, 3H), 1.47 (s, 3H), 1.52 (s, 3H), 3.90–4.00 (m, 2H), 4.00–4.20 (m, 5H), 4.20–4.35 (m, 3H), 4.43 (dt, $J = 0.5, 7.1$ Hz, 2H), 4.59 (dd, $J = 2.2, 7.9$ Hz, 2H), 4.70– 4.80 (m, 1H), 5.09 (d, $J = 5.4$ Hz, 1H), 5.18 (d, $J = 7.4$ Hz, 1H), 5.53 (d, $J = 4.8$ Hz, 1H); ¹³C NMR (50 MHz, CDCl3) d (ppm): 24.4, 24.9, 25.3, 25.8, 25.9, 26.1, 26.8, 26.9, 66.9, 67.2, 68.9, 71.1, 71.2, 71.6, 73.6, 74.4, 78.0, 81.9, 83.8, 96.3, 101.6, 109.2, 109.4, 113.4, 113.7, 131.9, 139.7, 155.1; API-ES positive: $577.3 \ (M+Na)^+$. Compound (10). $[\alpha]_{\text{D}}$ +93.5 (CHCl₃, *c* 0.55); ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.33 (s, 3H), 1.34 (s, 3H), 1.45 (s, 3H), 1.54 (s, 3H), 4.01 (dt, $J = 1.5$, 5.7 Hz, 2H), 4.21 (dt, $J = 1.5$, 5.7 Hz, 2H), 4.24–4.35 (m, 2H), 4.61 (dd, $J = 2.4$, 8.1 Hz, 1H), 5.55 (d, $J = 5.1$ Hz, 1H), 6.30 (dd, $J = 6.0$, 15.9 Hz, 1H), 6.61 (d, $J = 15.9$ Hz, 1H), 7.18–7.42 (m, 5H); ¹³C NMR (50 MHz, CDCl3) d (ppm): 25.2, 25.7, 26.7, 26.9, 43.6, 66.4, 73.2, 78.1, 80.4, 83.0, 97.9, 101.2, 109.6, 113.7, 119.3, 120.9, 121.4, 124.8, 127.2, 128.7, 129.5, 136.0, 157.3; API-ES positive: 291.0, 412.3 $(M+1)^{+}$.